New in v2.0: A computed column stores data generated from other columns by a scalar expression included in the column definition.
Why use computed columns?
Computed columns are especially useful when used with partitioning, JSONB
columns, or secondary indexes.
Partitioning requires that partitions are defined using columns that are a prefix of the primary key. In the case of geo-partitioning, some applications will want to collapse the number of possible values in this column, to make certain classes of queries more performant. For example, if a users table has a country and state column, then you can make a stored computed column locality with a reduced domain for use in partitioning. For more information, see the partitioning example below.
JSONB columns are used for storing semi-structured
JSONB
data. When the table's primary information is stored inJSONB
, it's useful to index a particular field of theJSONB
document. In particular, computed columns allow for the following use case: a two-column table with aPRIMARY KEY
column and apayload
column, whose primary key is computed as some field from thepayload
column. This alleviates the need to manually separate your primary keys from your JSON blobs. For more information, see theJSONB
example below.Secondary indexes can be created on computed columns, which is especially useful when a table is frequently sorted. See the secondary indexes example below.
Considerations
Computed columns:
- Cannot be added after a table is created. Follow the GitHub issue for updates on this limitation.
- Cannot be used to generate other computed columns.
- Cannot be a foreign key reference.
- Behave like any other column, with the exception that they cannot be written to directly.
- Are mutually exclusive with
DEFAULT
.
Creation
Computed columns can only be added at the time of table creation. Use the following syntax:
column_name <type> AS (<expr>) STORED
Parameter | Description |
---|---|
column_name |
The name/identifier of the computed column. |
<type> |
The data type of the computed column. |
<expr> |
The pure scalar expression used to compute column values. Any functions marked as impure , such as now() or nextval() cannot be used. |
STORED |
(Required) The computed column is stored alongside other columns. |
Examples
Create a Table with a Computed Column
In this example, let's create a simple table with a computed column:
> CREATE TABLE names (
id INT PRIMARY KEY,
first_name STRING,
last_name STRING,
full_name STRING AS (CONCAT(first_name, ' ', last_name)) STORED
);
Then, insert a few rows a data:
> INSERT INTO names (id, first_name, last_name) VALUES
(1, 'Lola', 'McDog'),
(2, 'Carl', 'Kimball'),
(3, 'Ernie', 'Narayan');
> SELECT * FROM names;
+----+------------+-------------+----------------+
| id | first_name | last_name | full_name |
+----+------------+-------------+----------------+
| 1 | Lola | McDog | Lola McDog |
| 2 | Carl | Kimball | Carl Kimball |
| 3 | Ernie | Narayan | Ernie Narayan |
+----+------------+-------------+----------------+
The full_name
column is computed from the first_name
and last_name
columns without the need to define a view.
Create a Table with Geo-partitions and a Computed Column
In this example, let's create a table with geo-partitioning and a computed column:
> CREATE TABLE user_locations (
locality STRING AS (CASE
WHEN country IN ('ca', 'mx', 'us') THEN 'north_america'
WHEN country IN ('au', 'nz') THEN 'australia'
END) STORED,
id SERIAL,
name STRING,
country STRING,
PRIMARY KEY (locality, id))
PARTITION BY LIST (locality)
(PARTITION north_america VALUES IN ('north_america'),
PARTITION australia VALUES IN ('australia'));
Then, insert a few rows of data:
> INSERT INTO user_locations (name, country) VALUES
('Leonard McCoy', 'us'),
('Uhura', 'nz'),
('Spock', 'ca'),
('James Kirk', 'us'),
('Scotty', 'mx'),
('Hikaru Sulu', 'us'),
('Pavel Chekov', 'au');
> SELECT * FROM user_locations;
+---------------+--------------------+---------------+---------+
| locality | id | name | country |
+---------------+--------------------+---------------+---------+
| australia | 333153890100609025 | Uhura | nz |
| australia | 333153890100772865 | Pavel Chekov | au |
| north_america | 333153890100576257 | Leonard McCoy | us |
| north_america | 333153890100641793 | Spock | ca |
| north_america | 333153890100674561 | James Kirk | us |
| north_america | 333153890100707329 | Scotty | mx |
| north_america | 333153890100740097 | Hikaru Sulu | us |
+---------------+--------------------+---------------+---------+
The locality
column is computed from the country
column.
The locality
values can then be used for geo-partitioning.
Create a Table with a JSONB
Column and a Computed Column
In this example, let's create a table with a JSONB
column and a computed column:
> CREATE TABLE student_profiles (
id STRING PRIMARY KEY AS (profile->>'id') STORED,
profile JSONB
);
Then, insert a few rows of data:
> INSERT INTO student_profiles (profile) VALUES
('{"id": "d78236", "name": "Arthur Read", "age": "16", "school": "PVPHS", "credits": 120, "sports": "none"}'),
('{"name": "Buster Bunny", "age": "15", "id": "f98112", "school": "THS", "credits": 67, "clubs": "MUN"}'),
('{"name": "Ernie Narayan", "school" : "Brooklyn Tech", "id": "t63512", "sports": "Track and Field", "clubs": "Chess"}');
> SELECT * FROM student_profiles;
+--------+---------------------------------------------------------------------------------------------------------------------+
| id | profile |
+--------+---------------------------------------------------------------------------------------------------------------------+
| d78236 | {"age": "16", "credits": 120, "id": "d78236", "name": "Arthur Read", "school": "PVPHS", "sports": "none"} |
| f98112 | {"age": "15", "clubs": "MUN", "credits": 67, "id": "f98112", "name": "Buster Bunny", "school": "THS"} |
| t63512 | {"clubs": "Chess", "id": "t63512", "name": "Ernie Narayan", "school": "Brooklyn Tech", "sports": "Track and Field"} |
+--------+---------------------------------------------------------------------------------------------------------------------+
The primary key id
is computed as a field from the profile
column.
Create a Table with a Secondary Index on a Computed Column
In this example, let's create a table with a computed columns and an index on that column:
> CREATE TABLE gymnastics (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
athlete STRING,
vault DECIMAL,
bars DECIMAL,
beam DECIMAL,
floor DECIMAL,
combined_score DECIMAL AS (vault + bars + beam + floor) STORED,
INDEX total (combined_score DESC)
);
Then, insert a few rows a data:
> INSERT INTO gymnastics (athlete, vault, bars, beam, floor) VALUES
('Simone Biles', 15.933, 14.800, 15.300, 15.800),
('Gabby Douglas', 0, 15.766, 0, 0),
('Laurie Hernandez', 15.100, 0, 15.233, 14.833),
('Madison Kocian', 0, 15.933, 0, 0),
('Aly Raisman', 15.833, 0, 15.000, 15.366);
> SELECT * FROM gymnastics;
+--------------------------------------+------------------+--------+--------+--------+--------+----------------+
| id | athlete | vault | bars | beam | floor | combined_score |
+--------------------------------------+------------------+--------+--------+--------+--------+----------------+
| 3fe11371-6a6a-49de-bbef-a8dd16560fac | Aly Raisman | 15.833 | 0 | 15.000 | 15.366 | 46.199 |
| 56055a70-b4c7-4522-909b-8f3674b705e5 | Madison Kocian | 0 | 15.933 | 0 | 0 | 15.933 |
| 69f73fd1-da34-48bf-aff8-71296ce4c2c7 | Gabby Douglas | 0 | 15.766 | 0 | 0 | 15.766 |
| 8a7b730b-668d-4845-8d25-48bda25114d6 | Laurie Hernandez | 15.100 | 0 | 15.233 | 14.833 | 45.166 |
| b2c5ca80-21c2-4853-9178-b96ce220ea4d | Simone Biles | 15.933 | 14.800 | 15.300 | 15.800 | 61.833 |
+--------------------------------------+------------------+--------+--------+--------+--------+----------------+
Now, let's run a query using the secondary index:
> SELECT athlete, combined_score FROM gymnastics ORDER BY combined_score DESC;
+------------------+----------------+
| athlete | combined_score |
+------------------+----------------+
| Simone Biles | 61.833 |
| Aly Raisman | 46.199 |
| Laurie Hernandez | 45.166 |
| Madison Kocian | 15.933 |
| Gabby Douglas | 15.766 |
+------------------+----------------+
The athlete with the highest combined score of 61.833 is Simone Biles.